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ABSTRACT 

The paper discusses the “se of formal specifications 
for conformance testing of OS1 protocols and divides the 
discussion in two parts: test design and tester design. A 
draft standard formal specification of the Class 4 tran- 
sport protocol in Estelle is taken as the starting point for 
test design. The test design technique used to derive a 
conformance test suite is semi-forma.1 based in part on the 
formal specification and also the informal specification. 
The tests obtained are expressed in natural language. In 
the tester design part, we discuss the distributed test 
architecture of IS0 and give the detailed designs of upper 
and lower testers. It is shown that, in testing Class 4 

transport implementations, a parametrized protocol 
imptementation approach in the lower tester design, 
renders the tests easier to implement 

1. INTRODUCTION 
Due to wide spread acceptance of International Standards 

Organization (ISO)-Open Systems Interworking (OSI) protocols [DaZi 
83). testing the implementations of these protocols has become an 
important activity. By testing a protocol implementation it is meant 
that a set of tests, called a test suite is applied to the 
implementation with the aim of determining whether the 
implementation conforms to the relevant OS1 protocol standard. IS0 
subcommittee that deals with conformance testing for OS1 has 
recently developed a methodology which defines various architectures 
for protocol testing [Rayn 85). After defining the methodology and 
framework for specifying conformance test suites, it is hoped that 
test suites will be adopted for each of the OS1 protocols. 

Formal description techniques have now matured to be used in 
formally defining the OS1 protocols and in various other related 
activities. There exist two techniques developed by IS0 ([Linn 861, 
[Brin 86)): Estelle based on an extended flnite-state machine model 
and Lotos based on a calculus of communicating systems. Estelle 
specifications of several OS1 protocols have been developed, compilers 
exist of earlier dialects and implementations of OS1 protocols are 
quite easy to obtain using them. Lotos is expected to catch up with 
Estelle in this respect in a near future. 
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It is desirable to use formal specifications of ProtocOlS for 
conformance testing, since forma1 specifications do not possess the 
deficiencies of natural language specifications, i.e., being ambiguous 
and imprecise. It can be expected that formal specifications will 
eventually replace todays so-called protocol standards. 

This paper focuses on the use of formal specifications Of 
protocols as the basis of implementation and testing activity. In 
particular, we consider the transport protocol service class 4 [IS 80731 
and its specifications in Estelle [NBS 851. The next section discusses 
the method we used in deriving tests and Section 3 overview the 

conformance test suite for class 4 transport protocol (TPCL4). Tester 
design is discussed in Section 4 and test implementation in Section 5. 
Section 6 contains the authors’ conclusions on this research activity. 

2. TEST DESIGN 
The ideal approach to test design would be to “se as reference 

the formal specification in Estelte [NBS 851 and apply to it the test 
design methodology developed previously [Sari 841. This section 
gives an overview of the methodology and explains why the forseen 
approach was not feasible and discusses the method used instead. 

The test design methodology is based on identifying the 
functions of a protocol from the formal specification and then 
deriving test sequences to test each such function. The formal 
specification analysis is done by symbolically executing the 
specification. The methodology has manually been applied to 
transport protocol classes 0 and 2 [Sari 841. 

The formal specification of TPCLI [NBS 851 is much more 
complex than TPCL2 since its structure was conceived to include all 
classes of the protocol and also Class 4 is a complex protocol in itself. 
The number of various local procedures/ functions, internal 
variables, channels, spontaneous transitions, etc. are such that it is 
extremely difficult to mentally follow the behavior of the specification 
and apply the symbolic execution on it without automated tools. 

The specification [NBS 851 contained various syntactic and 
semantic errors. These errors were revealed by a limited manual 
application of symbolic execution [SaBoSe 861. Later, the errors were 
considered for correction and new versions of the specification 
appeared which has invalidated the partial analysis performed since 
these changes not only affected the value assignments to internal 
variables of the protocol, but also modified the major state 
transitions. In short. the formal specification’s use has been limited 
to be a starting point for both implementation [Sew 861 and test 
design. 

The test design is based on the informal specification [IS 80731, 
although some information derived from the formal specification is 
used to supplement it. This information includes primarily the 
control graph (finite-state machine) of TPCL4 which is used to derive 
the transition subtours [SaBo 841, and the data flow graphs of some 

protocol functions used to determine the ordering of the tests 
considering their functional dependencies. Transition subtours give 
the normal sequence of primitives to be applied to verify a given 
function. Other possible events should be considered during test 



specification as discussed in Section 5. From the informal 
specitlcation, functions of TPCL4 are identified. Each test is designed 
to verify that the implementation conforms to the conditions listed in 
the specification for that function. It seems difficult to completely 
automate this test design approach. Test design experience for 
similar protocols is an important factor in this test design process. 

3. TEST SUITE 

A number of tests designed to verily the conformance of a 
protocol implementation to the protocol standard is called a test 
suite. In this section WC discuss a test suite for TPCL4. The tests 
are designed to be applied in a distributed single layer architecture 
which is detailed in Section 4. This architecture has the components 
of the upper tester (UT) which is a service user of the 
implementation and the lower tester (LT) situated in the test center 

and acting as a peer protocol entity. 

3.1. Classification of the Tests 

From the informal specification of TPCL4 we have identified 
the following functions to be verified by the test suite: 

-Connection establishment and release, 
-Connection refusal, 
-Error release of connection, 
-Expedited data transfer with its flow control, 
-Data transfer, including: 

-Segmenting and reassembling, 
-Concatenation and separation, 
-DT TPDU numbering, 
-Flow control, 
-Retention and retransmission, 
-Credit reduction, 
-AI< TPDU retransmission, 
-Mixed data and expedited data transfer, 

-Multiplexing and splitting, 
-Network failure, 
-Robustness, including: 

-Unexpected peer stimulations, 
-Unexpected user stimulations. 

Based on these functions, the test suite is divided into 9 groups 
of tests: basic test, connection estabIishment, connection refusal, 
error release of connection, expedited data transfer, data transfer, 
multiplexing/ splitting, network failures and robustness. Some of 
these groups are discussed below. 

3.2. Basic Test 

This is the first test that has to be applied to the 
implementation. Its purpose is to verify that a transport connection 
with minimal connection parameters can be established and that a 
flxed length data message can be transfered in both directions (in one 
direction at a time). 

3.3. Connection Establishment Tests 

The tests in this group verify correct handling of the 
parameters of the CR primitive to be received by the 
implementation. The parameters of interest are: class and alternative 
class, maximum TPDU size, extended format option, checksum. 
expedited data option, credit, user data. Each of these parameters is 
enumerated in a test whenever possible exhaustively. A different 
value is tried in a consecutive connection. In the case of user data 
only the length parameter is enumerated exhaustively. 

This group contains a test for the acceptance of retransmitted 
CR. whose purpose is to verify if the implementation accepts 
repeated identical CR TPDUs, which woaId occur when the peer 
protocol timer has elapsed. 

There is a number of UT initiated tests in the connection 
establishment test group. The UT initiated basic connection 

establishment test tries to establish a simple transport connection 
originated from the UT. Other tests try to force the implementation 
to enumerate various parameters of the CR primitive to be received 
by the LT such as expedited data option, alternative class, maximum 
TPDU size, checksum. These tests are more restricted than the LT 
initiated tests since UT is a service user of the implementation and 
the TCONrequest service primitive parameters can control the 
corresponding TPDU parameters only indirectly. One of the UT 
initiated tests checks that the implementation does not refuse a 
connection in which the CC credit parameter specifies a different 
value for each consecutive connection. 

3.4. Data Transfer Test Group 

The data transfer test group contains a basic data transfer test, 
an UT originated data transfer test, two-way simultaneous data 
transfer test, and the tests for flow control, AI< retransmission, credit 
reduction and data transfer timers. A test for mixed data expedited 
data transfer is also included. Some of the tests will be explained 
below. 

3.4.1. Two-way Simultaneous Data Transfer Test 

The purpose of the test is to exchange data messages in bath 
directions at the same time. After connection establishment, LT 
starts sending DT TPDUs OC length one octet and increasing by one 
octet each time up to a certain maximum. Various TSDU lengths are 
tried using the eot parameter of the DT, thereby testing the reaction 
of the IUT to fragmentation. Consecutive DT TPDUs are sent 
without waiting for an Al< TPDU unless the window is closed. LT 
keeps a retransmission timer for every DT sent but not 
acknowledged. The UT receives the transport service data units 
(TSDU) and verifies that the data was not modified. At the same 
time, UT starts sending TSDUs (again of length one octet and 
increasing by one each time). Similarly, LT receives corresponding 
DT TPDUs and verifies their content and checksum and 
acknowledges them by sending an AK TPDU for each correctly 
received TPDU. At the end, UT sends an error report to the LT. 

During this test the implementation could try to establish 
several simultaneous network connections to provide a better 
throughput by using the splitting mechanism of TPCL4. 

3.4.2. Test for Data Transfer Timers 

This test is designed to verify if the implementation retransmits 
unacknowledged DT TPDUs. LT establishes a connection and sends a 
DT TPDU containing 1 octet of data. UT should receive a T-DATA 
indication containing that data. Thereafter, UT sends a fixed number 
of TSDUs. LT receives the corresponding DTs, but does not 
acknowledge the DTs. After the implementation sends all DTs in its 
send window, it should stop sending new DTs. After W seconds 
(defined as window timer in [IS 80731) from the sending of the first 
DT, the implementation should retransmit the DT. The 
implementation should continue retransmitting other DTs until the 
window is closed. Then the LT sends an fxI< TPDU acknowledging 
retransmitted DTs and including credit for more DT TPDUs to be 

sent. The test stops when UT sends all the data 

3.4.3. Mixed Data Expedited Data Transfer Test 

The purpose of this test is to verify the correct transfer of 
TSDUs and Expedited data (ED) concurrently and the 
implementation’s capability to stop the normal data transfer until an 
outstanding acknowledgement for an ED is received. After the 
connection is established, LT sends consecutive DT TPDUs without 
waiting for AK TPDUs until the window is closed. UT closes the 
flow control, i.e. it does not accept the T-DATA indications. When 
the window is closed the LT sends an ED TPDU and should receive 
its acknowledgement, i.e., the EA TPDU. LT sends a second ED and 
should receive a second EA. 
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UT does not receive TSDUs until the first 
T-EXDATA-indication arrives. After it receives the second 
expedited data, UT starts sending T-DATA-requests. When the 
sequence wrap around is achieved (assuming normal sequence 
numbers) the UT sends two consecutive T-EXDATA-indications. 
The implementation should send an ED TPDU, stop the normal data 
flow and wait for an EA. LT acknowledges the ED after having 
received all normal data previously sent by the IUT. The test is 
finished when the second ED is acknowledged and all normal data are 
transfered. 

4. TESTER DESIGN 

The distributed single-layer test architecture of IS0 [Rayn 851 
provides the most complete form of single-layer testing. In the case of 
the transport layer. the upper tester (UT) part of the architecture 
applies transport service primitives dellned in [IS 80721 to the 
implementation under test (IUT) and the lower tester (LT) applies 
TPDUs over a network layer connection to the IUT. In this section 
we discuss the detailed designs of UT and LT. 

4.1. Upper Tester 

The upper tester uses the services provided by the IUT which 
are dependent on the programming environment in which the IUT 
runs. Although [IS 8072) defines the transport service primitives and 
their temporal ordering, their implementation details are left to the 
implementation. Given the fact that the tests described in Section 3 
will be applied to various implementations, it is desirable to 
implement the upper tester part of the tests in an implementation 
independent manner. One way of achieving this independence is to 
create an extra network connection and design a simple responding 
unit which will send the responses of the IUT to the LT and receive 
and apply the next input to IUT. In this way, the complicated part 
of the UT is kept in the test center [ZeRa 861, [RaCaCh 861. We have 
found this approach not feasible for testing TPCL4 implementations 
since the extra network connection can not be assumed to be reliable, 
i.e., the transport protocol class 4 is to be used over networks which 
are inherently unreliable. 

In our design the independence is achieved by giving an 
implementation speci6cation for the tests in Estelle. Each test 
consists of two specifications, one of which describes the UT 

behavior. We deflne a minimal transport service and use this service 
in all the test specifications. Adaptation of this minimal service to a 
given local service interface is done in a module of the UT called 
permanent part. Figure 3.1 shows the architecture of our upper 
tester design. 

The permanent part (referred in what follows as UTP) is a 
program started at the beginning of the test session and runs until 
the last test is completed. It has the following components: 

1. The kernel consists of the common region which is used to 
store the implementation parameters such as the number of 
multiplexed connections supported, the addresses, etc., and 
service conversion routines. 

2. The test management protocol module. The module executes 
the test protocol which enables the LT to dictate which is the 
next test to be applied and to load t,he parameter region with 
updated values. This protocol uses the transport class 2 
protocol and includes an initial basic test for the transport 
protocol class 2 implementation in the IUT. 

The test instance module referred in what follows as UT1 is the 
executable code obtained from the Estelle specification of a test and 
some runtime routines. UTI’s executable code is different for each 
test, but a single runtime routine package is used. The runtime 
routine package contains two sets of procedures: interprocess 
communication routines to communicate with UTP and utility 
routines provided by the Estelle translator. 

The test-interface channel in Fig.3.1 is used to send the 
common region to UT1 and to send a status report at the end of the 
test to UTP. The TSgrimitives channel is used to exchange a 
representation of the service primitives between the UTP and UT1 
(in the form of Pascal record generated by the Estelle translator). 
The transport service channel is the transport service access point 
(TSAP) provided by the IUT. UTP converts the minimal service 
primitives of UT1 to the service primitives supported locally and vice 
versa. 

4.2. Lower Tester 

The lower tester is the active part of the test system. It runs on 
the test center computer, therefore transportability is not an 
important issue. LT establishes network connections with the IUT 
and sends/ receives transport protocol data units (TPDU). A 
possible design is by implementing each test in a conventional 
procedural language, e.g. Pascal with some support routines for 
encoding/ decoding of PDUs, trace generalion, etc. This approach 
has been taken in the transport protocol class 0 tests (BoCeMaSa 831. 
With this approach, the test program usually contains a large part of 
the protocol tested. For simple protocols, such as TPCLO, this fact 
does not create large test programs, while for complicated protocols, 
such as TPCL4, test programs tend to be huge. This was the case 
when we tried to implement the basic test of Section 3 in this 
manner. 

Another approach to LT design is to use a Reference 
Implementation (RI) of the protocol under test jLiNi 831. The 
reference implementation is assumed to be tested independently and 
hence, assumed to be correct. The test program can use the services 
of RI simplifying many of its tasks. The LT implementation in [LiNi 
831 contains an exception generator unit in order to introduce invalid 
PDUs. Although the exception generator increases the testing 
capabilities of the reference implementation approach. there arc other 
behaviors needed in the RI which are different from the normal 
behavior of an ordinary implementation. The test suite described in 
Section 3 contains many examples of these behaviors, some of which 
will be discussed below. This leads us to a third approach to LT 
design: the use of a parametrized protocol implementation 
(PPI). 

The architecture of our lower tester design with the 
parametrized implementation approach appears in Figure 3.2. The 
Parametrized Protocol Implementation (PPl) is a full, parametrized 
implementation of TPCL4 where most of the implementation 
decisions (e.g. CR options, use of splitting, acknowledgement scheme, 
etc.) are controlled by global Variables that can be modiiled by the 
test module. The test module (TM) is different for each test and is 
responsible for setting the PPI in proper decision mode. as required 
by the test. TM interacts with PPI by using transport service 
primitives with additional parameters to increase observability. 
These parameters are used to transmit the parameters of the received 
TPDU. For example, the augmented T-CONNECT-conf primitive 
contains all parameters of the received CC. 

4.2.1. Functionalities of PPI 

Some of the behaviors needed in the PPI by the test suite of 
Section 3 are different from the behavior of an ordinary 
implementation. We call PPI functionalities these different 
behaviors which can be selected through appropriate choices of the 
implementation parameters. Some of these functionalities are the 
following: 

1. Repeat CC (even if an AK TPDU received) until lUT 
disconnects, The default behavior of implementation is 
disabled to implement this rune tionality. 

2. Do credit reduction after “x” DT TPDUs are received. The “x” 
is a parameter specified by the TM (default behavior is disabled 
as above). 

3. Do not acknowledge some of the DTs. in order to see if the KJT 
retransmits them. 
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4. Maximum multiplexing on a single network connection. 

5 Maximum splitting of each transport connection 

6. Concatenation, 3 different schemes: (a) none, (b) medium (wait 
for a small delay before sending TPDU), and (c) maximum 
concatenation used only in two-way traffic (TPDUS will not be 
sent before concatenation is made). The default behavior is (a). 

7. Do nothing on a particular network connection (while splitting 
is used). This functionality is used in inactivity timer tests. 
The default behavior is disabled. 

6. CONCLUSIONS 

A conformance test suite developed for a complicazed protocol, 
i.e., the transport protocol class 4, is described. The tests are 
obtained in a semi-formal manner by using both formal and informal 
speciilcations of the protocol. 

4.2.2. Interface between TM and PPI 

The get/set channel in Fig. 3.2 provides the setting of the 
functionality required by TM and the reading of the event 
indicators. The TM uses a set interaction to initialize the values 
of the global parameter variables created to select functionalities, 
and a get interaction to read the values of the event indicators and 
the global variables. Corresponding to each functionality described 
above, there is a global variable to enable it. There are other global 
variables dellned to facilitate test specification, for example a 
structure containing default values of the outgoing CR parameters, 
maximum number of retransmissions (global for all TPDUs), timer 
values and trace options. 

Various design possibilities for the distributed single-layer test 
architecture are considered to implement the test suite. Upper tester 
design is made by considering transportability and the upper tester 
part of the tests are specified formally in a formal specification 
language. Lower tester design is made to facilitate test specification. 
In this case, a parametrized protocol implementation approach seems 
to be the best design, since most of the control required by the tests 
can be accommodated and the tests are easy to specify (a test 
speciilcation assumes a given parametrized transport protocol 
specification). 

The event indicators are set by the PPI and read by the TM. 
Some of these indicators define the following: 

We have used a translator of a formal speciilcation language to 
implement most of the components of the tester and all the tests. It 
would be useful to have some tools to automatically generate tests 
possibly based on the methodology of [Sari 841. We believe that the 
tester design and the test suite design technique can easily be 
adapted to test the implementations of the protocols of Session and 
Presentation layer. The application layer protocols require a different 
test approach since there is often no direct access to the application 
service primitives. 

- Incoming CR parameters, a structure similar to the one used 
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